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Several infinite systems of nonlinear algebraic equations satisfied by the zeros of
confluent hypergeometric functions are derived. Certain sum rules and other related
properties for the zeros follow from these equations. A large class of special
functions, which are special cases of confluent hypergeometric functions, is
included. This is illustrated in the case of the zeros of Bessel functions and
Laguerre polynomials.

1. INTRODUCTION

Recently a series of investigations have been carried out on the properties
of the zeros of special functions [2-8, 11, 12, 16, 17 J. The functions mainly
dealt with were the classical orthogonal polynomials (Jacobi, Laguerre and
Hermite) and the Bessel functions. The motivation of this paper is to
formulate a unified theory describing these properties. This is initiated by
investigating the properties of the zeros of confluent hypergeometric
functions-which include a large class of functions as special cases. Indeed
the known results concerning the zeros of Bessel functions and Laguerre
polynomials [3-5, 7J are seen to follow easily.

Though some properties of the zeros of confluent hypergeometric
functions were already known for quite some time [9,10,13,18, 19J, we
shall mainly concentrate in deriving a new class of infinite systems of
nonlinear algebraic equations satisfied by the zeros of the confluent
hypergeometric function tP(a,c;x) [also denoted by .Ft(a,c;x)J [13J. As
will be evident later, these equations yield in a natural and straightforward
manner some remarkable properties for the zeros of tP(a, c; x) and related
functions.
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2. NOTATIONS AND PRELIMINARIES

Let x j be the infinite (real and complex) zeros of the confluent
hypergeometric function cP(a, c; x)

the infinite series representation for cP(a, c; x) being

00 (a) x n

cP(a, c; x) = ~ ()n , '
n=O C nn.

(a)n = a(a + 1)(a + 2) '" (a +n - 1); (a)o= 1.

(2.1 )

(2.2)

(2.3 )

The zeros x j are functions of the parameters a and c, where c *- - m,
m = 0, 1,2,... , but for notational convenience we shall not indicate this
explicitly.

The infinite product representation for cP(a,c;x) is [14,18]
00

et>(a,c;x) = exp(ax/c) n [l-x/xj )exp(x/xj )!. (2.4)
j=[

However, throughout this paper we shall deal with the analytic function
00

x(a, c; x) = exp(-ax/c) cP(a, c; x) = n [(1 - X/Xj) exp(x/xj )] (2.5)
j=[

whose zeros of course coincide with the zeros of et>(a, c; x) except possibly at
infinity.

Buchholz [9,10] ordered the zeros x j in such a way that Ix[l::;;; IXzl::;;;
Ix3 1 ::;;; ... , and derived formulas for

ex

5 == '\' x:- p
p ~ J '

j=!

p= 2, 3,.... (2.6)

For instance, for p = 2, 3,4,5, these are

5 =~X:-2= a(a-c)
2 j~I} c 2(c + 1) ,

5
3
= ~ x:- 3 = a(a-c)(c-2a)

t:'!} c3(c+1)(c+2)'

S _ ~ _4_ a(a-c)[a(a-c)(5c+6)+c 2(c+ I)]
4- /-:'. x j

- c4 (c + 1)2 (c + 2)(c + 3)

5 = ~ ~:-s = a(a - c)(c - 2a)[a(a - c)(7c + 12) + c2(c + I)]
S j--::['} CS(c + 1)2(C + 2)(c + 3)(c + 4)

(2.7)

(2.8)

(2.9)

(2.10)
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3. AN INFINITE SYSTEM OF NONLINEAR EQUATIONS
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Since the confluent hypergeometric function f/>(a, c; x) satisfies the
differential equation [13]

xf/>" + (c - x) f/>' - af/> = 0 (3.1 )

it follows from (2.5) that the function x(a, c; x) satisfies the differential
equation

C2xx" + c[(2a - c)x + c2] X' + a(a - c) Xx = O. (3.2)

THEOREM l. The zeros X j of x(a, c; x) satisfy the infinite system of
nonlinear algebraic equations

w

2cx] 2::' X;I(Xj -Xk)-I = (c - 2a) Xj - c(c + 2). (3.3)
k=1

Proof Differentiating (2.5) logarithmically gives

oc·
'I '" -I( )-1X X=X ) x· x-x· .

~ J J
j=l

Differentiating again it follows after some trivial algebra

oc- oc:

x"Ix = " x j-
2+ 2 I xj-I(X-X)-I

j= I j= I

(3.4 )

00 w

+2x2 2:: 2::' [XjXk(X-Xj)(Xj-Xk)]-I. (3.5)
j= I k= I

The last term on the right-hand side follows by interchanging the indices j
and k. Further manipulations lead to

x"lx = j~l Xj2 [1 + 2(x +xJxj k~l' x; I(Xj - Xk)-I ]

+2 ~ xj-I(X-Xj)-l [I +xJ ~, X;I(Xj-Xk)-I]. (3.6)
j=1 k=1

In the above expressions, as well as the following ones, a prime appended to
a sum indicates the exclusion of the singular term. The convergence of the
sums appearing in these expressions can be verified a posteriori by the
results to follow.



338 SHAFIQUE AHMED

Substituting (3.4) and (3.6) in the differential equation (3.2) we obtain an
equation of the form

where

[AX+B+ ~ (X-Xj)-'CjlX=O,
j~ 1

(3.7)

and

(3.10)

Equation (3.7) immediately implies that Cj , B and A must vanish.

Remark. The vanishing of B and A is consistent with Eq. (3.3) and the
convergent sums (2.7) and (2.8). This is easily seen by substituting (2.7) and
(3.3) in (3.9): and dividing (3.3) by xJ and using (2.7) and (2.8). Note
moreover that A = 0 implies that the double sum

(3.11 )

is antisymmetric with respect to the exchange of the dummy indices j and k,
a fact otherwise difficult to establish for such an infinite sum.

4. HIGHER-ORDER NONLINEAR EQUATIONS

The derivation of higher-order nonlinear algebraic equations of the type

ex,

ajm)=x'j' "V' (xj-xk)-m
k=l

for m = 2, 3, 4, 5 (4.1 )

are presented here. However, the results can be generalized for any m [21].

THEOREM 2. The zeros X j of the confluent hypergeometric function
tP(a, c; x) satish' the relation

00

2(xj -X;)-2=C/2xj x;+ ~' [(xj-xk)(X;-Xk)]-I. (4.2)
k=l
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Proof Consider the equation with j replaced by i in (3.3)
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(4.5)

00

2cx; ~'x;-1(Xi-Xt)-I=(c-2a)xi-2(c+2); (4.3)
t~ 1

multiply (3.3) and (4.3) by Xi and Xj' respectively, subtract (4.3) from (3.3),
extract from the sums the terms with t = j and k = i and divide throughout
by (xj-xi ).

THEOREM 3. The zeros X j satisfy the nonlinear equations

00

12xJ ~'(Xj-Xk)-2=-x;+2(c-2a)xj-c(c+4). (4.4)
k=l

Proof Divide (4.2) by Xi' sum over i, omitting of course the singular
term with i =j, and manipulate the sums algebraically obtaining

3 k:l' (Xj -Xk)-2=(C+ l)(~l Xj2_Xj-2)

- ~, X;l(Xj-Xk)-1 [2+xJ ~, X;I(Xj-Xk)-I].
k=l k=l

Now use (2.7) and (3.3).

COROLLARY 3.1. The zeros x j satisfy the double sum

Proof Divide (4.4) by xJ, sum over j and use (2.7), (2.8) and (2.9).

COROLLARY 3.2. For real a and c the zeros x j (which are finite and
real) satisfy the bounds

(c - 2a) - 2 Va(a - c) - c < x j < (c - 2a) + 2 Va(a - c) - c. (4.7)

Proof The positivity of the left-hand side of (4.4) implies the positivity
of the right-hand side.

THEOREM 4. The zeros xj satisfy the nonlinear equations

00

8xJ ~' (xj - Xk) -3 = (c - 2a) Xj - c(c + 2).
k=l

640/34/4-2

(4.8)
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Proof Divide (4.2) by (xj - Xi) and sum over i (i *-j). The double sum
appearing in the right-hand side vanishes by antisymmetry. Then use (3.3).

COROLLARY 4.1~ The double sum

'X.! ·x,

~ ~'(Xk-Xk)-J=O.
j= I k= 1

Proof Divide (4.8) by xJ, sum over J and use (2.7) and (2.8).

(4.9)

COROLLARY 4.2. For real a and c the smallest (real) zero X I satisfies the
upper bound

c(c + 2)
XI < 2'c - a

(4.10)

Proof The left-hand side of (4.8) is negative for J= 1, XI being the
smallest (real) zero.

Remark. Equations (3.3) and (4.8) imply the identity

(4.11 )

THEOREM 5. The zeros xj satisfy the nonlinear equations

eJ:j

720xJ ~'(Xj-Xk)-4
k=1

= xJ - 4(c - 2a) xJ + 2[8a(a - c) + c(3c - 2)] xJ (4.12)

- 4(c - 2a)(c2
- 2c - 18) xj + c[c(c +4)(c - 8) - 72(c + 2) I.

Proof Divide (4.2) by (Xj -X i )2, sum over i (i*J) and manipulate
algebraically the sums appearing in the right-hand side, getting

(4.13 )

Now use (3.3) and (4.4).
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THEOREM 6. The zeros Xj satisfy the nonlinear equations
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= - (e - 2a)x] + [8a(a - c) + e(3e - 2)] xJ

- 3(e - 2a)(e + 2)(e - 4)xj + e(e +4)(e 2
- 8e - 12). (4.14)

Proof Divide (4.2) by (xj - xJ" sum over i(i =F j), manipulate
algebraically the right-hand side and use (3.3), (4.4) and (4.8).

COROLLARY. The double sum

OC 00

"\' ,/( _ )-5-0__ xj x k -.

j=' k= I

Proof Divide (4.14) by xJ and use (2.7), (2.8), (2.9) and (2.10).

Remark. The double sum

(4.15 )

00 00

, ,-" (x.-x
k
)-2r-1 =0,__ J

j= 1 k= 1

r= 1,2,.... (4.16 )

However, for r = 0 this sum does not vanish as can be easily seen by
summing (3.3) over j and noting that the reciprocal power sum 'L..t'= 1 Xj- I

which appears in the result (by partial fraction) is already divergent [9, 10 I.
Another remarkable property of the nonlinear equations (3.3) is that the

sums (2.6) for the reciprocal integral powers of the zeros xj can be easily
derived without resorting to the complex integration technique of Buchholz
[9]. For instance, for p = 4, dividing (3.3) by xJ and summing over j, we get

00 00 00 00

2e Y' ~I Xj-2x ,;-'(xj -xk )-I==(e-2a) ~ x j-
3 -e(e+2) ~ x j -

4.(4.17)
j~1 k~1 j~l j=1

The indices j and k being dummy, the double sum on the left-hand side
simplifies to

(4.18)

The sum (2.9) then follows using (2.7) and (2.8). Similarly dividing (3.3) by
xJ and using (2.7), (2.8) and (2.9), the sum (2.10) is obtained.
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5. ZEROS OF BESSEL FUNCTIONS

The limit formula [II connecting the confluent hypergeometric function
c[)(a, c; x) to the Bessel function J,,(x)

lim c[)(a, v + 1,-x/a)=F(v+ l)x-"/2J,,(2xI;2) (5.1)
a-+o:::,

implies

lim aXj -+ - J'i4,
a-+if:..

(5.2)

where Yj are the squares of the zeros of the Bessel function J,,(x). Using this
limit there follows from Theorems I to 5 respectively the infinite systems of
nonlinear equations satisfied by the squares of the zeros of Bessel functions
[5,71

00

2Yj ~' (Yj - Yk)-l = -(~, + I),
k=l

00

12yJ ~' (Yj-Yk)-2=Yj_(V+ 1)(1'+5),
k=1 .

00

16y] ~' (Yj-Yk)-3=Yj-2(v+ 1)(v+3),
k=l

w

nOy} ~' (Yj-Yk)-4=yJ-2(v 2-19)Yj
k=l

(5.3a)

(5.3b)

(5.3c)

+ (v + 1)(v3- v2- 109v - 251), (5.3d)

00

576yJ ~' (Yj-Yd- 5 =y]-3(v2-9)Yj+2(v+ 1)
k=l

x (v + 5)(v2 - 6v - 19), (5.3e)

where v"* - 1, -2, -3,.... In deriving (5.3a) from Theorem 1, the well-known
sum rule [11, 201

w

~ Yj- I = [4(v + 1) j- I

j=l

(5.4 )

has also been used. Note that Equations (5.3) are more general than those
already known [71 as they now hold for both real and complex zeros. This is
due to the imposition of fewer restrictions on the values of v. Note moreover
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that when Yj is real, Eqs. (5.3) also provide some interesting bounds. For
instance, (5.3b) provides the lower bound

)'j> (v+ 1)(v+5)

whereas (5.3c) provides for the least zero)'1 the upper bound

)'1 < 2(v + I)(v + 3).

(5.5 )

(5.6 )

Other results concerning the squares of the zeros of Bessel functions of the
forms [5, 7J

if] CIJ

'\' ~' (Yj - )\)-P,
j= I k= I

p= 2, 3,...,

can be easily obtained using the limit (5.1).
Certain results concerning the zeros (not the squares of the zeros) of

Bessel functions can also be obtained from the results for the zeros of
confluent hypergeometric functions but this time by considering the Bessel
function J,,(x) as a particular case [1, 13 J

J,,(x) = F(v~ 1) (x/2)"e- ixc[>(v+!.2v+ 1;2ix) (5.7)

or equivalently the function

¢(x) == T(v + 1)(x/2)" JJ"') = X(v + !, 2v + I; 2ix), (5.8)

which follows from (2.5). Replacing a by v + 1, C by 2v + 1 and x j by 2ixj in
Eq. (3.3) we obtain the nonlinear equations satisfied by the zeros x j of ~(x)

oc

~' x; I(Xj - Xk)-I = -(2v + 3)/2xJ,
k=1

(5.9)

where 2v *- -1, -2, -3,.... However, Eq. (5.3a) for the squares of the zeros Yj
(=xJ) follows from (5.9) by noting that the function ¢(x) given by (5.8) is an
even function of x. Indeed the symmetry of the zeros xj of this function
around the origin implies that

oc'

=-1xJ+2 ~' (xJ-xD-t,
k=1

(5.10)
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where on the left side of (5.10), 2v *' -I, -2, -3,... , and on the right side
v*,- I, -2, -3,.... Using (5.9) it follows that

ex,

2 '\' f (2 2) --I _ ( I) - 2
~ X j - X k - - v + X j ,

k=1

v*,-I,-2,-3,... , (5.11)

which is the same as (5.3a) with xJ = Yj' Note moreover that the reciprocal
power sum (2.7) for the zeros x j of the Bessel functions becomes

ex,

~ Xj~2= [2(v+ 1)1- 1
,

j= I

(5.12 )

which of course reduces to (5.4) by considering the symmetry property of
the zeros, i.e., multiplying the right-hand side by a factor of 1. Note inciden­
tally that the reciprocal power sums for the odd powers of the zeros x j

vanish
":£ r::J:"

'\' x:- 3 = " x:- 5 = 0
""'- J ....... J '
j=l j~1

which follows from (2.8) and (2.10), or in general

(5.13)

'x
'\' x:-2m~1 =0
~ J '
j=1

m = 1,2..... (5.14 )

6. ZEROS OF LAGUERRE POLYNOMIALS

If a is zero or a negative integer, the confluent hypergeometric function
rt>(a, c; x) becomes a polynomial in x, related to the generalized Laguerre
polynomial L~(x) by the formula [1, 13]

n!
<P(-n,a+I;X)=( ) L~(x).

a + I n
(6.1 )

Consequently replacing a and c by -n and (a + 1), respectively, in the
results for the zeros of the confluent hypergeometric function and noting that
all the sums are now finite, we obtain from Theorems I to 5 the algebraic
equations for the zeros Zj of the generalized Laguerre polynomial L ~(x),

n

2 ~'(Zj-zk)-I=I-(l+a)zj-I, (6.2a)
k=1

n

12z; ~' (Zj-Zk)~2=-zJ+2(2n+a+l)zj-(a+ 1)(a+5), (6.2b)
k=1
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n

8zJ ~'(Zj-Zk)-3=(2n+a+ l)zj-(a+ 1)(a+3), (6.2c)
k=1

n
720z~ '\"" (Z. - Z )-4

J ~ J k
k=l

= ZJ - 4(2n +a + 1) zJ

+ 2[8n(n +a + 1) + (a + 1)(3a + 1)1 zJ

-4(2n+a+ 1)(a 2 -19)zj+(a+ 1)(a 3 -a2 -109a-251), (6.2d)
n

288zJ ~'(Zj-Zk)-5
k=1

=-(2n+a+ l)zJ+ [8n(n+a+ I)+(a+ 1)(3a+ 1)]zJ

- 3n(2n +a + 1)(a 2
- 9) Zj + (a + l)(a + 5)(a 2

- 6a - 19), (6.2e)

where j = 1,2,... , n and a *' -I, -2, -3,.... These equations were recently
derived in the context of the study of equilibrium configurations of certain
one-dimensional many-body problems [3-5]. However, these equations are
more general being applicable both to the case of real and comple zeros.
Other sums of the type [3 J

n n

~ ~'(Zj-Zk)-P,
j= I k= I

p = 1,2,....

can be similarly derived from analogous results for the zeros of the confluent
hypergeometric functions.

7. CONCLUDING REMARKS

The zeros of certain combinations of confluent hypergeometric function
4>(a, e; x) also satisfy the results for the zeros of 4>(a, e; x). This is inferred
from the recurrence relations for 4>(a, e; x). For instance, the relation [131

(a-e+ 1)4>(a,e;x)=(e-I)4>(a,e-l;x)-a4>(a+ I.e;x) (7.1)

implies that the zeros of the contiguous function (e - I) 4>(a, e - 1; x)­
a4>(a + I, e; x) satisfy all the results concerning the zeros of 4>(a, e; x).
except, of course, for the case a = e - I. The differential property [131

d a
-d 4>(a,e;x)=-4>(a+ I,e+ I;x)

x e
(7.2)
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implies that the zeros of the first derivative of C/J(a, c; x) satisfy similar
results as for C/J(a, c; x) with the replacement a ---> a + 1 and c ---> c + 1.

Nonlinear equations satisfied by the zeros of confluent hypergeometric
function of course include results for zeros of other functions which are
special cases [I] of this function such as Hermite polynomials, Whittaker
functions, Parabolic Cylinder Functions and Coulomb Wave Functions.

A further generalization so as to obtain nonlinear equations of the form

m = 1. 2, 3,.... (7.3 )

for the zeros of other special functions not included here is also possible

\211·
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